
Albert-Ludwigs-Universität, Inst. für Informatik
Prof. Dr. Fabian Kuhn
H. Ghodselahi, Y. Maus November 10, 2016

Algorithm Theory, Winter Term 2016/17
Problem Set 2 - Sample Solution

Exercise 1: Almost Closest Pairs of Points (16 points)

In the lecture, we discussed an O(n log n)-time divide-and-conquer algorithm to determine the closest pair of
points. Assume that we are not only interested in the closest pair of points, but in all pairs of points that are at
distance at most twice the distance between the closest two points.

a) (4 points) How many such pairs of points can there be? It is sufficient to give your answer using big-O
notation.

b) (12 points) Devise an algorithm that outputs a list with all pairs of points at distance at most twice the
distance between the closest two points. Describe what you have to change compared to the closest pair
algorithm of the lecture and analyze the running time of your algorithm.

Solution

The recursive algorithm for finding the closest pair of points, that was presented in the lecture, recursively
divided the set of points on the plane into two sets and found the minimal distance as min{d`, dr, d`r}, where
d` and dr are the minimal distances among the pairs of points in both sets and d`r is the minimal distance
between pairs of points that lie in different sets. It was shown that finding d`r has linear complexity and the
overall running time of the algorithm is O(n log n).

2d/3

2d/34d

4d

(a) Positioning of points that are at
distance at most 2d and at least at
distance d around the actual point
we are checking.

2d

4d

2d/3

2d/3

(b) There is at most one point in each small square. We need
to look only at most at 17 points.

Figure 1: Each small square can contain at most one point inside.

a) Let us assume that the closest pair of points is already known and the distance between them is d. For each
point p we evaluate how many points there can be in distance 2d. Figure 1a shows how the points at distance
at most 2d from the center point can be covered using 36 squares with side length 2d/3. As 2

√
2d/3 < d

each such square can contain at most one point (including points on the boundary) and since the center point

1

is part of 4 squares, the figure shows that a point can have at most 32 other points at distance at most 2d.
This way we count each pair twice and thus the number of pairs of points at distance at most 2d is at most
32
2 n = O(n).

b) Now, let us modify the divide-and-conquer algorithm from the lecture, in order to solve our task.

As in the closest pair algorithm of the lecture, after sorting points by their x-coordinate, we divide the set of
points into a left subset Sl and a right subset Sr of equal size and we recursively find the smallest distance
d` (dr) in the left (right) half, as well as the list L` (Lr) that contains all pairs of points in S` (Sr) that are
in distance at most 2d` (2dr) of each other. For the merging step we find the smallest distance between
points that are on different sides of the division line and at the same time compile a list of pairs of points at
distance at most 2min{d`, dr} such that the points lie on different sides. We compute d = min{d`, dr, d`r},
concatenate the three lists and remove all pairs < p, q > for which dist(p, q) > 2d from the combined list.
Finally, we return d and the list with all pairs of points at distance at most 2d.

dist(S): returns < d,L, Y >

Divide: Divide (sorted) set of points S in two equally sized sets S` and Sr.

Conquer: Apply algorithm to both sets S` and Sr. Compute minimal distances d`, dr, lists of point pairs
L` and Lr and lists Y` and Yr of points sorted by their y-coordinate.

Merge: Compute d`r and L`r and return d := min(d`, dr, d`r). L′ := L` ∪ Lr ∪ L`r; L := L \ {< p, q >:
dist(p, q) > 2d}; return L. Merge Y` and Yr into a new sorted list Y .

Let us take a closer look at merge step of the algorithm. For the merge step of the algorithm that was looking
for the closest pair of points, it was shown that for each point, at most 7 points that lie in a rectangle d× 2d
have to be checked to find d`r correctly. This resulted in a merge step of cost O(n). For finding d`r we
do the same, but for constructing L`r we consider a rectangle 2d × 4d. To illustrate our idea, consider the
picture below (Figure 1b). If we divide this rectangle into squares 2d

3 ×
2d
3 each, we can see that each of

such square can contain at most one point (because d is our current minimal distance). There are 18 such
squares and thus within the list Y we need to compare any point p only with its 17 successors. This leads
us to the same recurrence relation T (n) = 2 · T (n2) + cn and we again obtain an algorithm running time of
O(n log n).

2

Exercise 2: Polynomial Multiplication using FFT (10 points)

Let p(x) be a polynomial of degree n and q(x) a polynomial of degree m. If m = n the multiplication
algorithm in the lecture (using FFT) yields to O(n log n) runtime. Now suppose n > m. How can one do the
multiplication in O(n logm) time?

Solution:

In the lecture we have seen that two polynomials which both have degree m can be multiplied in timeO(m logm).
We will use this as a blackbox to devise an algorithm which multiplies two polynomials p1 and p2 with
deg(p1) = n and deg(p2) = m, n > m in time O(n logm). Without loss of generality we assume that
m divides n. Our goal is to compute q(x) := p1(x) · p2(x).

Let d = n/m ∈ N and let p1(x) =
∑n

i=0 aix
i be given. Define for j = 0, . . . , d− 1

p1,j(x) :=

{ ∑(j+1)m
i=jm+1 aix

i−jm, j ≥ 1∑m
i=0 aix

i, j = 0

Note that p1(x) =
∑d−1

j=0 x
jm·p1,j . Then the degree of each of the polynomials is at most m, i.e., deg(p1,j) ≤ m.

Essentially, we represent the polynomial p1 by d polynomials p1,0, . . . , p1,d−1 each with degree at most m.
Then we multiply p2 with each of the polynomials which can be done in time O(m logm) with the algorithm
which was presented in the lecture (we call it FFTMultiplier). Due to the distributive law we can compute
q by adding up the results, which takes only O(m) time for each of the d polynomials.
We give pseudocode of the described procedure in Algorithm 1.

Algorithm 1: Multiplying two polynomials in O(n logm)

Input: Polynomials p1(x), p2(x) with n = deg(p1(x)) > deg(p2(x) = m, d = n/m ∈ N
Output: Returns the polynomial p1(x) · p2(x)
q ← 0
for j ← 1 to d− 1 /* Runtime: n/m iterations of the loop. */
do

if j=0 then
p1,j(x)←

∑m
i=0 aix

i /* Runtime: O(m) */

else
p1,j(x)←

∑(j+1)m
i=jm+1 aix

i−jm /* Runtime: O(m) */

end
p3,j ← FFTMultiplier(p2, p1,j)) /* Runtime: O(m logm) */

q(x)← q(x) + xjm · p3,j(x) /* Runtime: O(m) */

end
return q(x)

The runtime of the algorithm isO(n logm) as the execution of each loop can be performed in timeO(m logm)
and there are d = n/m iterations.

3

Exercise 3: Interval Scheduling (14 points)

In the interval scheduling problem, we are given a set of intervals each with starting and ending times. The
goal is to select a largest possible non-overlapping set of intervals. Let us assume overlaps at the boundaries
are fine. In the lecture, we have studied a greedy algorithm called shortest available interval for solving the
problem. We have seen that the algorithm fails to optimally solve the problem.
Show that the above greedy algorithm returns a set of intervals in which the size of the set is at least half of the
number of intervals provided by the optimal algorithm.

Solution:

Suppose I is the set of all intervals. Let S and S∗ denote the sets of all intervals picked by the greedy algorithm
called Greed and by an optimal algorithm, respectively.

Recap on Greed: At the beginning S is empty. Basically, every time Greed picks the shortest interval among
all intervals available in I and adds it to S, removes the interval that is already picked and all other intervals
that overlap with that from I . Greed repeats this procedure as long as I is not empty.

Observation 1. Greed guarantees that every interval in I overlaps with at least one interval in S.
Proof. Let us assume that there exists an interval in I that does not overlap with any interval in S. With re-
spect to Greed, the interval must have been picked by Greed and been in S that contradicts our assumption.

Observation 2. Greed guarantees that every interval in S overlaps with at most two non-overlapping in-
tervals in I .
Proof. Again we provide a simple proof by contradiction. Suppose that there exists an interval i ∈ S that over-
laps with more than two non-overlapping intervals in I . This implies that at least one of these non-overlapping
intervals that overlaps with i is shorter than i. Therefore, the shorter interval must have been picked by Greed
rather than i since the Greed every time picks the shortest available interval. Hence, this contradicts our as-
sumption.

Claim. |S∗| ≤ 2 · |S|.
Proof. To show that the claim holds, it is sufficient to prove that

(1) every interval in S∗ overlaps with at least one interval in S and

(2) each interval in S overlaps with at most two intervals in S∗.

The statements of (1) and (2) immediately follow from the Observation 1 and Observation 2, respectively, since
S∗ is the set of non-overlapping intervals such that S∗ ⊆ I .

4

